- ker function
- función de núcleo
English-Spanish mathematics dictionary. James G., James R.C.. 1964.
English-Spanish mathematics dictionary. James G., James R.C.. 1964.
Theta function — heta 1 with u = i pi z and with nome q = e^{i pi au}= 0.1 e^{0.1 i pi}. Conventions are (mathematica): heta 1(u;q) = 2 q^{1/4} sum {n=0}^infty ( 1)^n q^{n(n+1)} sin((2n+1)u) this is: heta 1(u;q) = sum {n= infty}^{n=infty} ( 1)^{n 1/2}… … Wikipedia
Kelvin function — noun A class of special functions usually denoted as two pairs of functions ber(x), bei(x), ker(x) and kei(x) with variable x and given order number n. The former two functions ber(x) and bei(x) respectively correspond to the real part and the… … Wiktionary
Jordan normal form — In linear algebra, a Jordan normal form (often called Jordan canonical form)[1] of a linear operator on a finite dimensional vector space is an upper triangular matrix of a particular form called Jordan matrix, representing the operator on some… … Wikipedia
Kernel (algebra) — In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a matrix, also… … Wikipedia
Kelvin functions — The Kelvin functions Ber nu;( x ) and Bei nu;( x ) are the real and imaginary parts, respectively, of :J u(x e^{3 pi i/4}),, where x is real, and J u(z), is the nu;th order Bessel function of the first kind. Similarly, the functions Ker nu;( x )… … Wikipedia
Equivalence relation — In mathematics, an equivalence relation is a binary relation between two elements of a set which groups them together as being equivalent in some way. Let a , b , and c be arbitrary elements of some set X . Then a b or a ≡ b denotes that a is… … Wikipedia
Linear map — In mathematics, a linear map, linear mapping, linear transformation, or linear operator (in some contexts also called linear function) is a function between two vector spaces that preserves the operations of vector addition and scalar… … Wikipedia
Kernel (set theory) — In mathematics, the kernel of a function f may be taken to be either*the equivalence relation on the function s domain that roughly expresses the idea of equivalent as far as the function f can tell , or *the corresponding partition of the domain … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Ring homomorphism — In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the operations of addition and multiplication. More precisely, if R and S are rings, then a ring homomorphism is a function f : R → S such that … Wikipedia